Note on the number of semistar operations, X
نویسندگان
چکیده
منابع مشابه
A Note on the Cancellation Properties of Semistar Operations
If D is an integral domain with quotient field K, then let F̄(D) be the set of non-zero D-submodules of K, F(D) be the set of non-zero fractional ideals of D and f(D) be the set of non-zero finitely generated D-submodules of K. A semistar operation ? on D is called arithmetisch brauchbar (or a.b.) if, for every H ∈ f(D) and every H1, H2 ∈ F̄(D), (HH1) ? = (HH2) ? implies H 1 = H ? 2 , and ? is ca...
متن کاملThe semistar operations on certain Prüfer domain, II
Let D be a 1-dimensional Prüfer domain with exactly two maximal ideals. We completely determine the star operations and the semistar operations on D. Let G be a torsion-free abelian additive group. If G is not discrete, G is called indiscrete. If every non-empty subset S of G which is bounded below has its infimum inf(S) in G, then G is called complete. If G is not complete, G is called incompl...
متن کاملthe effects of cognitive strategies- note making and underlining- on iranian efl learners’ reading comprehension
هدف از انجام این مطالعه ، بررسی اثرات استفاده از استراتژی های شناختی یعنی "نت برداری" و "زیر خط کردن" بر روی عملکرد درک مطلب زبان آموزان ایرانی می باشد. به این منظور، 60 زبان آموز دختر سال چهارم دبیرستان از طریق آزمون پیشرفت زبان انگلیسی (نلسون)، از یک جامعه آماری بزرگتر انتخاب شدند. سپس به صورت تصادفی به سه گروه که هر گروه شامل ?0 دانش آموز همسان بود، تقسیم شدند: دو گروه آزمایش(گروه "نت برداری...
15 صفحه اولLocal–global Properties for Semistar Operations
We study the “local” behavior of several relevant properties concerning semistar operations, like finite type, stable, spectral, e.a.b. and a.b. We deal with the “global” problem of building a new semistar operation on a given integral domain, by “gluing” a given homogeneous family of semistar operations defined on a set of localizations. We apply these results for studying the local–global beh...
متن کاملA note on the Roman domatic number of a digraph
Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical journal of Ibaraki University
سال: 2006
ISSN: 1883-4353,1343-3636
DOI: 10.5036/mjiu.38.1